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Abstract: The recent years have given rise to a large number of techniques for “looking around
corners”, i.e., for reconstructing or tracking occluded objects from indirect light reflections off a
wall. While the direct view of cameras is routinely calibrated in computer vision applications,
the calibration of non-line-of-sight setups has so far relied on manual measurement of the most
important dimensions (device positions, wall position and orientation, etc.). In this paper, we
propose a method for calibrating time-of-flight-based non-line-of-sight imaging systems that
relies on mirrors as known targets. A roughly determined initialization is refined in order to
optimize for spatio-temporal consistency. Our system is general enough to be applicable to a
variety of sensing scenarios ranging from single sources/detectors via scanning arrangements to
large-scale arrays. It is robust towards bad initialization and the achieved accuracy is proportional
to the depth resolution of the camera system.
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1. Introduction

The ability to “see” beyond the direct line of sight forms not only an intriguing academic problem
but also has possible future applications ranging from emergency situations, where situational
awareness about dangers and victims is key, to scientific scenarios, where microscopes supporting
such techniques reveal hidden structures.
The recent years have produced a number of techniques that sense objects located “around a

corner” by recording time-resolved optical impulse responses, where light that bounces off a
directly visible wall enters the occluded part of the scene and thus gathers information about
hidden objects; see Fig. 1(a) for a schematic illustration. The available operation modes [1–6]
support not only object detection and tracking of components of the occluded scene but extend to
the full reconstruction of 3D shape and texture. In general it is assumed that the entire geometry
of the setup is known and only the hidden object is to be reconstructed. This implies that the
capture must be preceded by a manual calibration: Positions and distances of devices and objects
have to be measured with high accuracy, a task which is tedious and often results in imprecise
results.

Here, we propose an automatic system for calibrating the geometry of non-line-of-sight sensing
setups. Our scheme does not require any additional hardware other than a common, planar mirror
which serves as the calibration target. As in traditional camera calibration, the target is recorded
in different positions and orientations. Since the calibration scheme does not rely on the target
being textured, and since only a temporal onset (rather than the full time-of-flight histogram)
is used, our calibration scheme can be employed for all types of ultrafast sensors, including
single-pixel sensing scenarios [7], randomly scattered measurement locations [8] as well as
low-resolution imagers and even correlation time-of-flight sensors [9]. Additionally, task-specific
constraints (e.g., pixel positions restricted to a scan line) are easily integrated in the method.
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Fig. 1. (a) We propose a novel method for the geometric calibration of three-bounce
non-line-of-sight setups using transient imaging hardware. Light travels from a laser
SL to a laser spot l located on the diffuse reflector wall. From there, it is reflected
towards a calibration target m and back to a projected camera pixel c, finally reaching
the camera SC . We calibrate the setup using multiple images of a specular, planar
mirror in different positions and orientations, analog to the procedure in classical 2D
camera calibration. Instead of relying on known features on the calibration target, we
use the time of flight of the full path from laser to camera to solve for the individual
laser spot positions l and projected camera pixels c. (b) The optimization problem is
non-convex but has very low initialization requirements (e.g. eyeballing). (c) Even in
the presence of time-of-flight noise, our method reconstructs the setup geometry up to
a very high precision. The ground truth values (shown in red and green) are barely
visible under the reconstruction.

Fig. 1. (a) We propose a novel method for the geometric calibration of three-bounce
non-line-of-sight setups using transient imaging hardware. Light travels from a laser SL
to a laser spot l located on the diffuse reflector wall. From there, it is reflected towards a
calibration target m and back to a projected camera pixel c, finally reaching the camera SC.
We calibrate the setup using multiple images of a specular, planar mirror in different positions
and orientations, analog to the procedure in classical 2D camera calibration. Instead of
relying on known features on the calibration target, we use the time of flight of the full
path from laser to camera to solve for the individual laser spot positions l and projected
camera pixels c. (b) The optimization problem is non-convex but has very low initialization
requirements (e.g. eyeballing). (c) Even in the presence of time-of-flight noise, our method
reconstructs the setup geometry up to a very high precision. The ground truth values (shown
in red and green) are barely visible under the reconstruction.

Our calibration scheme requires an initialization to warm-start the non-linear optimization
problem. In contrast to a laborious measurement however, we rely only on a rough estimate of
the setup’s geometry: As long as the initial solution coarsely reflects the dimensions of the scene
geometry, the method is robust even in the presence of time-of-flight noise.

Using an experimental measurement setup, we demonstrate that our scheme not only recovers
relevant parameters to high accuracy, but that it also improves the outcome of non-line-of-sight
(NLoS) reconstructions obtained using data from the setup.

2. Related work

The last decade gave rise to a comprehensive body of work on non-line-of-sight sensing, i.e.,
the estimation of targets hidden from direct view by means of light undergoing indirect diffuse
scattering off directly visible proxy objects. While various lines of research are exploring the use
of steady-state measurements in order to extend the direct line of sight [10–15], the majority of
works remains focused on the use of time-resolved measurements (transient images).

A survey by Jarabo et al. provides a good overview of transient imaging [16]. Seminal
works include the recovery of low-parameter geometry and reflectance models from transient
measurements [2,17] as well as the first reconstruction of distinct shapes [1]. Since then,
significant effort has been devoted to unlock novel sensor technologies and interferometric setups
for transient imaging [5,18,19] while simultaneously improving the performance of the de-facto
standard reconstruction technique, ellipsoidal error backprojection [1,20,21]. Recent additions to
the non-line-of-sight reconstruction problem include the introduction of the confocal capture
setting [4] as well as attempts to cast the problem into paradigms borrowed from wave optics and
seismic tomography [22,23]. While most of these works rely on volumetric representations for
the hidden target, other researchers have explored alternative, surface-driven representations as
well [6,24,25]. These models typically lead to improved consistency of the solution with respect
to a physically-based forward simulation of light transport, and they also naturally express effects
like surface reflectance (BRDFs) or self-occlusion. Equipping volumetric representations with
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such surface-based characteristics to “guide” the reconstruction is possible, but comes at greatly
increased implementation effort and computational cost [3,9]. Lately, there has also been some
work introducing machine learning algorithms to NLoS reconstructions [15,26–28].

While details on setup calibration are often omitted in publications and the setup geometry is
just assumed to be known, the reported calibration methods can be grouped in several categories.
Instead of completely manual measurements (e.g. [5,11]), extending the setup by dedicated
calibration hardware is a common approach. Buttafava et al. uses a web cam to estimate the
3D position of the visible laser spot, however the webcam itself is manually calibrated using a
dot pattern [8]. La Manna et al. demonstrate NLoS reconstruction using a moving curtain as
relay surface which is scanned by an additional SPAD camera to achieve real-time calibration
[29]. Co-axial setups (where the position of the laser spot always coincides with the current
camera pixel position) usually use precise galvometers, which provide accurate angle information.
Together with the ability to measure the time-of-flight of the first reflection, the position of the
currently observed point can directly be computed [4,23]. Speckle correlation based approaches
(e.g. [10,27]) reconstruct the scene from non-transient measurements of a speckle pattern on
the reflector wall and thus do not rely on a geometric calibration in the same way as transient
approaches do. Machine-learning based methods that are trained on a static setup implicitly learn
the setup geometry and are inherently calibration-free [26,28]. However, a such trained network
cannot be transferred to new setups.

3. Method

A non-line-of-sight setup can be viewed as a high-dimensional function that maps parameters
such as the setup geometry, the hidden object, reflective properties of various components, a
background signal, the sensor model of the camera, and others to measurements. We distinguish
radiometric parameters (that govern the amount of light being transported) and spatio-temporal
parameters (that govern the time of flight). A first abstraction step drops camera and laser
peculiarities and describes measurements as transient histograms, i.e., the time-resolved (on
a pico- to nanosecond scale) intensity of light arriving at each sensor pixel. Commonly all
participating reflectance functions (BRDF) are assumed to be Lambertian (with notable exceptions
such as NLoS BRDF reconstruction [17] or retro-reflective objects [4]), and scenes are set up to
minimize reflections from the background. With these assumptions only the scene geometry and
the hidden object remain unknown.
With scene geometry measurements available, an analysis-by-synthesis approach can be

employed to reconstruct the hidden geometry [6,11]. A setup calibration can be attempted in a
similar fashion: Given a known hidden object (i.e. information like position, shape, size, and
reflective properties that are required to compute light transport are known) the setup is inferred
from measured transient data. The hidden object can be chosen freely (e.g. for diffuse objects
a image formation model as presented in [11] could be used) but we propose to use simple
planar mirrors, as available as common household object. As we will show in the following, this
choice significantly simplifies the image formation model. This then leads to an easier-to-solve
optimization problem (compared to general diffuse objects) that has far weaker requirements on
its initialization due to its implicit constraints. Our approach jointly optimizes for setup geometry
and mirror placement, which allows for a setup calibration with little manual measurements (that
can be performed with reduced accuracy to acquire only a rough estimate) for initialization.

The mirrors can be placed in the visible and hidden part of the scene. Thus access to the hidden
part is not strictly required, however it can lead to more robust calibration, if it is accessible.

3.1. Image formation model

Figure 1(a) gives a schematic illustration of an NLoS calibration setup: a sensor / laser light
source setup on the left hand side which is separated from the mirror calibration target by an



Research Article Vol. 28, No. 19 / 14 September 2020 / Optics Express 28327

occluder. We denote the physical position of the camera and the laser with SC and SL respectively.
As they are usually close to each other we define the shorthand notation S = {SC, SL}. In the
classic three-bounce setup the signal is reflected from a planar wall. We denote the projected
camera pixels on this wall with c ∈ C and the (potentially multiple) laser spots with l ∈ L. The
mirrors that replace the hidden object in our setup are denoted with m ∈ M.
Whether the pixels lie on a fixed grid (as for 2D image sensors), a single line (as for streak

cameras) or are placed arbitrarily on the wall (as for scans with single-pixel detectors) matters
only insomuch as that some cases allow for specialized parameterizations that can improve
calibrations (see Section 3.3). Due to Helmholtz reciprocity the roles of L and C are always
interchangeable in the following discussion. Most common NLoS setups assume that all l ∈ L
and c ∈ C lie on the same plane, which is the case for a planar wall. However, our method is also
applicable for general 3D points, which allows us to cover a wide variety of NLoS setups such as
curved walls, or walls that are rough (in the scale of the hardware’s temporal resolution).
Hidden objects have usually a complex shape and thus interreflections have to be taken into

account. In contrast, the specular reflections on the mirrors we use as calibration targets allow for
only a single, unique optical path l→ m→ c, connecting laser spot, mirror and projected pixel.
Compared to classical transient rendering this means that no integration over the surface of the
object is required, which allows for fast and noise-free computation. Our transient histograms only
contain a single, sharp peak. We assume that those peaks can be retrieved in a hardware-specific
pre-calibration step that handles effects such as background radiation or higher-order bounces
(see Appendix A.1).

A complete measurement consists of a series of paths Pi,j,k = SL → li → mj → ck → SC (we
omit indices in unambiguous cases). We assume that those paths are measured individually (i.e.
using only one mirror and illuminating only one laser spot at a time).
Each path is characterized by a time of flight and an intensity. The intensity depends on the

BRDF of the diffuse wall and its normal vector, while the time of flight is independent of both.
For our calibration we only rely on the time of flight. We thus neither need to assume nor to
estimate any BRDFs or wall normals (however, the wall’s surface normal can be estimated using
the reconstructed 3D positions of laser spots and camera pixels).
For the time of flight computation we need to compute the length of a path SL → l→ m→

c→ SC. Note that m is a plane while SL, SC, l, and c are points. Due to the specularity constraint
of the mirror reflection there exists a unique point mr on m at which the light is reflected. The
length of the sub path l → mr → c is equal to the path length l′ → c, where l′ is the point l
mirrored at m (see Fig. 2).
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Fig. 3. Setup used for the synthetic evaluation. The camera and laser are in the origin,
the red dots mark the laser spot positions. A total of 40 wall-facing mirrors (not shown
here) are placed between camera and wall.

4.1. Evaluation setup

Our standard evaluation setup (shown in Fig. 3) consists of 25 camera pixels (arranged in a 5 × 5
grid), 8 laser spot positions and 40 mirror positions. During the evaluation a varying amount of
the laser and mirror positions are used. The camera view frustum on the wall is 2 × 2 units and 4
units away from the camera and laser. The laser spot positions are arranged around the view
frustum while the mirrors are placed in front of the wall. We use the default case of a planar wall
for the majority of the evaluation. To mimic real calibration situations, we apply varying levels of
noise to the ground truth geometry to resemble measurement uncertainties. This perturbed data
is then used as the initialization for the optimization process, which helps us to assess what level
of accuracy is required to successfully estimate the correct geometry. In particular, we apply
measurement noise to the setup geometry using

• Gaussian noise with standard deviation of σ to pixel and laser spot positions,

• Gaussian noise with standard deviation of σ/4 to mirror normals and renormalize them,

• and Gaussian noise with standard deviation of σ to the mirror plane offsets.

It should be noted, that the noise level for positions is measured in distance units while the noise
level for normal vectors is measured in degrees, which makes them incomparable. The factor of
σ/4 is used here as it results in similar disturbances for both for this setup.
Similarly, Gaussian noise in various levels is applied to the reference time-of-flight values t.

Figure 1 shows the ground truth values along with an example initialization where spatial noise
with a standard deviation of σ = 0.5 was applied. At this noise level not much of the original
structure is preserved.

Fig. 2. To assess the optical path l→ mr → c, we use a similarity relation: The laser spot l
illuminates the wall as if it was reflected on the mirror plane, resulting in a virtual light spot
l′.



Research Article Vol. 28, No. 19 / 14 September 2020 / Optics Express 28328

A mirror plane is represented in the Hesse normal form as normal vector n and scalar offset d.
Then

l′ = l − 2(n · l + d)n (1)

and the total path length is the sum of all path segments,

f (S, l, c,m) = ‖l − SL‖ + ‖c − l′‖ + ‖SC − c‖ . (2)

While mathematical planes are infinite, real mirrors are usually not. If mr does not lie on the
physical mirror plane, c will not receive any signal (see Fig. 2). In this case, the path can simply
be removed from the optimization (see Section 3.2).

3.2. Calibration

We optimize our scene setup model by minimizing the temporal differences between time-of-flight
measurements t from the real setup and time-of-flight values computed from the current estimate
of the setup. If all possible light paths are used there are a total of #L · #M · #C measurements.
We solve

arg min
S,L,C,M

∑
l∈L

∑
c∈C

∑
m∈M



f (S, l, c,m) − tl,c,m


2 . (3)

using a standard gradient descent algorithm (BFGS [30]).
A calibration is only unique up to a rigid transformation of the whole setup since a rigid

transformation does not change any path lengths. We can therefore define the camera location SC
as the origin of the coordinate system and determine all other points relative to it. In general we
consider the offset between the camera location SC and the laser location SL as a known feature
of the hardware setup (Relative to the distance to the wall, the offset between SC and SL is usually
small. In these cases the angle between SC and SL viewed from any c or l is marginal and the
dominant factor is the total distance from the hardware to the wall).

The initialization is further discussed in Section 4. Due to the compact image formation model
automatic differentiation can be used for gradient computation.

3.3. Parameterization

In Eq. (3), we have l, c ∈ R3 and m ∈ R4 (represented in Hesse normal form). From this general
case, specialized parameterizations g : p → (S,L,C,M) can be derived. We implement two
such parameterizations for common special cases. A suitable parameterization can decrease the
degrees of freedom of the optimization (making it faster and more robust) and enforce certain
constraints on the solution.

3.3.1. Planar walls

Most current non-line-of-sight reconstruction approaches assume planar walls (with exceptions
such as [23,29]). After defining two basis vectors and an origin, each point on a planar wall can
be described by (u, v) ∈ R2. As a calibration is only unique up to a rigid transformation we can
define the wall plane as the X/Z plane. Then the only remaining parameter of the wall plane is
the offset to our origin S. As the mirrors reside outside the plane, their parameterization remains
unchanged.

3.3.2. Regular grids

On 2D camera sensors the individual pixels are usually arranged on a regular grid. This grid
is projected into the scene along the view direction leading to strong constraints between the
relative positions of the projected pixels. In the case of a planar wall this projection can be fully
characterized by a homography that maps homogeneous 2D coordinates of the image sensor to
2D coordinates on the wall. Since 2D sensors usually contain hundreds or thousands of pixels,
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the reduction of degrees of freedom to a constant of 9 (8 for the homography plus 1 for the
distance of the wall plane) is significant.

This parameterization can be further generalized by specifying a sensor pattern that is projected
onto the wall. Figure 10 shows an example of a pattern where some dead pixels have been masked
out. Such a pattern is assumed to be given and not part of the calibration process.

4. Method evaluation

A setup is characterized by a number of different parameters, some of which are easier to change
than others. Fixed parameters include those defined by the hardware, e.g., the resolution of the
image sensor (the number of camera pixels) and the accuracy of the time-of-flight information.
Flexible parameters include the number of laser positions, the number of mirror positions and
the quality of the initialization. It is important to understand how these parameters influence the
calibration process to choose the best values in practical applications.

4.1. Evaluation setup

Our standard evaluation setup (shown in Fig. 3) consists of 25 camera pixels (arranged in a 5 × 5
grid), 8 laser spot positions and 40 mirror positions. During the evaluation a varying amount of
the laser and mirror positions are used. The camera view frustum on the wall is 2 × 2 units and 4
units away from the camera and laser. The laser spot positions are arranged around the view
frustum while the mirrors are placed in front of the wall. We use the default case of a planar wall
for the majority of the evaluation. To mimic real calibration situations, we apply varying levels of
noise to the ground truth geometry to resemble measurement uncertainties. This perturbed data
is then used as the initialization for the optimization process, which helps us to assess what level
of accuracy is required to successfully estimate the correct geometry. In particular, we apply
measurement noise to the setup geometry using

• Gaussian noise with standard deviation of σ to pixel and laser spot positions,

• Gaussian noise with standard deviation of σ/4 to mirror normals and renormalize them,

• and Gaussian noise with standard deviation of σ to the mirror plane offsets.
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Fig. 3. Setup used for the synthetic evaluation. The camera and laser are in the origin, the
red dots mark the laser spot positions. A total of 40 wall-facing mirrors (not shown here) are
placed between camera and wall.

It should be noted, that the noise level for positions is measured in distance units while the
noise level for normal vectors is measured in degrees, which makes them incomparable. The
factor of σ/4 is used here as it results in similar disturbances for both for this setup.
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Similarly, Gaussian noise in various levels is applied to the reference time-of-flight values t.
Figure 1 shows the ground truth values along with an example initialization where spatial noise
with a standard deviation of σ = 0.5 was applied. At this noise level not much of the original
structure is preserved.

We characterize the quality of a calibration by the root-mean-square (RMS) error between the
individual components. Mirror positions are not considered part of the calibration result and thus
excluded from the metric. For two setups P = {S1, l ∈ L1, c ∈ C1} and Q = {S2, l ∈ L2, c ∈ C2}
(e.g. a ground truth setup and a calibration result) we compute

RMS(P,Q) =
√√

1
n

n∑
i=1
‖Pi − Qi‖22. (4)

As mentioned before, the calibrated setup might be in a different coordinate system and naively
applying Eq. (4) can result in high errors even for actually good result. Therefore we use the
Kabsch algorithm [31] to determine an optimal rigid transformation that transforms a setup onto
a reference, after which the RMS becomes meaningful. Since the RMS error has the same unit
as the initialization noise σ, the two can directly be set into relation. For instance, the example
in Fig. 1 uses 4 mirror positions and time-of-flight noise with a standard deviation of 0.02 was
applied. It achieves a reconstruction error of 0.042 scene units.

4.2. Required measurements

For a robust optimization the ratio between the input and output dimensions is an important
measure. The number of input dimensions of the optimization problem is defined by the amount
of measurements (i.e., used paths), while the number of output dimensions depends on the
parameterization. For the fully connected case (where all possible connections between lasers,
mirrors and cameras are included) there are #L · #M · #C measurements (where the # denotes the
number of elements in a set, e.g. #M is the number of mirrors). The output dimensions are:

• Default: 3 · #C + 3 · #L + 4 · #M,

• Planar: 2 · #C + 2 · #L + 4 · #M + 1,

• Grid: 2 · #L + 4 · #M + 9.

The planar parameterization uses 2-dimensional points on the wall plane but has the wall distance
as additional dimension. Similarly, the grid parameterization does not depend on the number of
camera pixels, instead it always has 9 additional dimensions (8 for the homography plus 1 for the
distance of the wall plane).
In Fig. 4 we compare the total number of measurements to the reconstruction error. To

analyze the performance of different combinations of laser and mirror positions, we realize the
same number of measurements with different combinations. All optimizations use the planar
parameterization and are initialized with a noise level σ ∈ [0, 0.5] and a time-of-flight noise level
of 0.02.

The results show that the number of measurements alone says little about the structure of the
problem, the same number of measurements may lead to severely different errors depending
on the ratio between lasers and mirrors. As expected, the reconstruction improves when more
measurements are used. More interestingly, it is also beneficial to have about as many laser
positions as there are mirror positions: The more extreme the ratio between laser and mirror
positions is (for a constant number of total measurements), the worse the results become. This is
related to the fact, that the ratio between available measurements and number of variables in
the optimization is maximized for equal amounts of laser and mirror positions. For practical
applications, the reconstruction error should be close to or below the depth resolution of the
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on the convergence of the optimization; the RMS error primarily depends on the number of
measurements involved.
Figure 6 shows the limits of the allowed initialization error. Even for high values some

optimization runs still converge to the correct result, but there are no guarantees and it cannot
be considered a safe initialization. Up to a certain threshold close to 1 units, the distribution of
reconstruction errors is strongly centered at low RMSE, indicating an accurate result (note the
log-log scale). Once this threshold is crossed, the optimization does not converge anymore and
exhibits a sudden drop in quality.

We can transfer these insights to form an important rule with respect to the calibration of real
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The r-values show the slope of a linear fit for each parameterization.

linear relationship between the uncertainty of the time-of-flight data and the reconstruction error.
The default parameterization supports arbitrarily shaped walls such as the curved wall shown

in Fig. 8.
Our main findings of this analysis is that for a sufficient amount of measurements, a wide area

of safe initialization exists. For optimal results, an equal amount of laser points and mirrors
should be used, equally distributed in the scene (but not in a symmetric pattern, which would
yield equal values for some measurements). If a setup uses only a single camera pixel or a
single laser position for object reconstruction, calibration results can be improved by adding
additional camera/laser positions for the calibration and later discard the calibration results of
these additional points.
Additional evaluations of the impact of the setup geometry can be found in Appendix C.

4.3. Implementation and runtime

In our prototype Eq. 3 is implemented purely in Python, the optimization of Eq. 3 is performed
using the BFGS algorithm from the scipy.optimize package with gradients compute by

Fig. 6. Reconstruction success depending on initialization noise. Time-of-flight noise is
fixed at 0.02. The blue distribution of the individual optimization results gives an better
intuition than the orange mean value - the results split in two distinct clusters for increased
noise. Note that both axes are in log scale.
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linear relationship between the uncertainty of the time-of-flight data and the reconstruction error.
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The default parameterization supports arbitrarily shaped walls such as the curved wall shown
in Fig. 8.

Our main findings of this analysis is that for a sufficient amount of measurements, a wide area
of safe initialization exists. For optimal results, an equal amount of laser points and mirrors
should be used, equally distributed in the scene (but not in a symmetric pattern, which would
yield equal values for some measurements). If a setup uses only a single camera pixel or a
single laser position for object reconstruction, calibration results can be improved by adding
additional camera/laser positions for the calibration and later discard the calibration results of
these additional points.
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Fig. 8. Example calibration of a curved wall. The setup consists of 6 lasers and 6
mirrors, the initialization noise is 0.5, the time-of-flight noise is 0.1. The RMS error of
the calibration is 0.099.

Fig. 9. Photograph and schematic of our experimental setup. The reconstruction target
is a house shape outside the field-of-view of the camera. The red spots on the wall
show the 7 laser spot positions that are used.

autograd. On typical setups, the optimization runs for about 2 minutes on desktop hardware,
with unoptimized code.

For large calibration problems with a high number of laser and camera positions, the
number of unknowns can be significantly reduced when the planar or grid parameteriza-
tion is used. For such highly overdetermined problems a significant amount of connections
(laser→mirror→camera paths) can be omitted as additional equations in the optimization problem
to improve performance.

5. Experimental results

We evaluate the performance of our calibration procedure in a NLoS experiment, and examine
the impact of calibration on NLoS reconstruction. In addition to measured data we also use
significantly less noisy synthetic time-of-flight data to repeat the evaluation on the same setup
geometry in order to emulate additional capture hardware.
The setup is shown in Fig. 9. It uses a total of 7 different laser spot and 7 mirror positions

(as described in Section 4.2 this ratio is efficient), and 26 × 29 camera pixels. The pixels are
arranged in a regular layout which enables the use of the grid parameterization. The reflector
wall is 6.6 m away from the camera, the field-of-view on the wall measures 1.35 m × 1.35 m. The
reconstruction target is a house shape which measures 69.5 cm × 54 cm. The mirror measures
80 cm × 100 cm.
The ground truth setup geometry that is used for the evaluation is obtained by manually

measuring the position of each mirror, laser spot, camera view frustum corner, and the position

Fig. 8. Example calibration of a curved wall. The setup consists of 6 lasers and 6 mirrors,
the initialization noise is 0.5, the time-of-flight noise is 0.1. The RMS error of the calibration
is 0.099.

Additional evaluations of the impact of the setup geometry can be found in Appendix C.

4.3. Implementation and runtime

In our prototype Eq. (3) is implemented purely in Python, the optimization of Eq. (3) is performed
using the BFGS algorithm from the scipy.optimize package with gradients compute by
autograd. On typical setups, the optimization runs for about 2 minutes on desktop hardware,
with unoptimized code.

For large calibration problems with a high number of laser and camera positions, the number of
unknowns can be significantly reduced when the planar or grid parameterization is used. For such
highly overdetermined problems a significant amount of connections (laser→mirror→camera
paths) can be omitted as additional equations in the optimization problem to improve performance.

5. Experimental results

We evaluate the performance of our calibration procedure in a NLoS experiment, and examine
the impact of calibration on NLoS reconstruction. In addition to measured data we also use
significantly less noisy synthetic time-of-flight data to repeat the evaluation on the same setup
geometry in order to emulate additional capture hardware.
The setup is shown in Fig. 9. It uses a total of 7 different laser spot and 7 mirror positions

(as described in Section 4.2 this ratio is efficient), and 26 × 29 camera pixels. The pixels are
arranged in a regular layout which enables the use of the grid parameterization. The reflector
wall is 6.6 m away from the camera, the field-of-view on the wall measures 1.35 m × 1.35 m. The
reconstruction target is a house shape which measures 69.5 cm × 54 cm. The mirror measures 80
cm × 100 cm.
The ground truth setup geometry that is used for the evaluation is obtained by manually

measuring the position of each mirror, laser spot, camera view frustum corner, and the position
of the hidden object using a measuring tape. The shape of the house is given by the SVG file
from which it was manufactured.

5.1. Calibration results

Our hardware setup consists of a PrincetonLightwave InGaAs Geiger-mode avalanche photodiode
camera and a Keopsys pulsed Er-doped fiber laser. The camera has a spatial resolution of 32× 32
pixels; however, some pixels are defective, which reduces the effective resolution to 26 × 29
pixels. The temporal bin width is 250 ps (7.495 cm at the speed of light) and each measurement
consists of 200,000 individual binary frames captured in about 4 seconds. The laser emits light
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Fig. 9. Photograph and schematic of our experimental setup. The reconstruction target is a
house shape outside the field-of-view of the camera. The red spots on the wall show the 7
laser spot positions that are used.

at a wavelength of 1.55 µm and has a pulse length of 500 ps. The transient histograms retrieved
from the camera are converted into discrete time-of-flight values by fitting a Gaussian function to
the main peak (see Appendix A.1). The house shape is made of white-painted plywood.
We measure the camera’s field of view using a moving marker on the wall and observing

it in the cameras live image (where the pixel size projected onto the wall is 4.2 cm × 4.2 cm).
The 7 spot positions of the near-infrared laser were measured using an IR detector card. We
estimate that these measurements are accurate up to 1–2 cm, which should be considered when
interpreting the calibration results. The signal offset between camera and laser (which results in
a time-of-flight offset) is calibrated by placing a planar calibration target in front of the setup at
several known distances. A household-grade mirror is mounted on a tripod which we place at 7
different locations in the scene. The mirror planes were initialized by measuring the position of
the tripod over the floor and assuming that the plane normal faces towards the geometric mean of
the camera and laser points. Although being a rough estimate, this approach proved sufficient.
Measurements are also affected by scattering (e.g. when the laser spot is close to the view

frustum or the laser beam crosses it and hits tiny particles in the air) resulting in invalid values.
As our proposed method uses a flexible list of l→ m→ c paths, we can automatically detect and
remove invalid paths from the optimization (see Appendix A.2 for details on the detection).
Figure 10 shows the calibration results. We evaluate a series of different initialization noise

values (see Section 4.1), namely 10, 20, 35, and 50 cm. For each noise level, two different
initializations are shown. Note that since the grid parameterization is used, noise is applied to
the corners of the view frustum instead of individual pixels (since their layout is given by the
sensor pattern). In real applications, the worst case (σ = 50 cm) would correspond to a rough
initialization obtained with just a sense of proportion and without any measuring devices.

As seen in the previous evaluation, the calibration usually either converges to a good solution
or not at all. For successful calibrations we achieve a typical RMS error of 3–4 cm on this
setup. Considering the poor temporal resolution of the setup, these results are consistent with
our findings in Section 4.
Additional to the measured time-of-flight data we also use synthetic data representing a

more advanced hardware setup. This data is created using the same model as in the inverse
optimization. We use identical conditions including removing the same pixels and using the
same subset of connections as for the real measurements. We apply noise to the time-of-flight
data as described in Section 4 with σ = 0.5 cm. The results are shown in Fig. 10. As expected
from the significantly lower noise level, the calibration results are about an order of magnitude
better than for the measured data.



Research Article Vol. 28, No. 19 / 14 September 2020 / Optics Express 28335

10.0 20.0 35.0 50.0
Initialization noise [cm]

100

101
RM

S 
[c

m
]

Calibration error
Measured
Synthetic

2.0 1.5 1.0 0.5 0.0
0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Calibration result

Cgt

Lgt

C
L
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noise of 35 cm. The RMS is 3.27 cm. Some rows and columns with dead pixels were
removed, resulting in visible gaps.
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from which it was manufactured.

5.1. Calibration results

Our hardware setup consists of a PrincetonLightwave InGaAs Geiger-mode avalanche photodiode
camera and a Keopsys pulsed Er-doped fiber laser. The camera has a spatial resolution of 32× 32
pixels; however, some pixels are defective, which reduces the effective resolution to 26 × 29
pixels. The temporal bin width is 250 ps (7.495 cm at the speed of light) and each measurement
consists of 200,000 individual binary frames captured in about 4 seconds. The laser emits light
at a wavelength of 1.55 µm and has a pulse length of 500 ps. The transient histograms retrieved
from the camera are converted into discrete time-of-flight values by fitting a Gaussian function to
the main peak (see Appendix A.1). The house shape is made of white-painted plywood.
We measure the camera’s field of view using a moving marker on the wall and observing

it in the cameras live image (where the pixel size projected onto the wall is 4.2 cm × 4.2 cm).
The 7 spot positions of the near-infrared laser were measured using an IR detector card. We
estimate that these measurements are accurate up to 1–2 cm, which should be considered when
interpreting the calibration results. The signal offset between camera and laser (which results in
a time-of-flight offset) is calibrated by placing a planar calibration target in front of the setup at
several known distances. A household-grade mirror is mounted on a tripod which we place at 7
different locations in the scene. The mirror planes were initialized by measuring the position of
the tripod over the floor and assuming that the plane normal faces towards the geometric mean of
the camera and laser points. Although being a rough estimate, this approach proved sufficient.
Measurements are also affected by scattering (e.g. when the laser spot is close to the view

frustum or the laser beam crosses it and hits tiny particles in the air) resulting in invalid values.
As our proposed method uses a flexible list of l → m→ c paths, we can automatically detect
and remove invalid paths from the optimization (see Appendix A.2 for details on the detection).
Figure 10 shows the calibration results. We evaluate a series of different initialization noise

values (see Section 4.1), namely 10, 20, 35, and 50 cm. For each noise level, two different
initializations are shown. Note that since the grid parameterization is used, noise is applied to
the corners of the view frustum instead of individual pixels (since their layout is given by the
sensor pattern). In real applications, the worst case (σ = 50 cm) would correspond to a rough
initialization obtained with just a sense of proportion and without any measuring devices.

Fig. 10. Calibration quality on the experimental setup. Left: The RMS is computed
according to Eq. (4). For each noise level, two initializations are created which are shared
by the evaluations on both the measured and synthetic time-of-flight data. The gray lines
show the 0.5 cm and 5 cm error. Right: Comparison between a typical calibration result
and measured positions on measured time-of-flight data for an initialization noise of 35 cm.
The RMS is 3.27 cm. Some rows and columns with dead pixels were removed, resulting in
visible gaps.

5.2. Reconstruction results

For object reconstruction, we use the phaser-field backprojection algorithm described in Liu et al.
[22]. Since properties like the resolution, the noise level, and general intensity vary between
the measured and synthetic data, the reconstruction parameters must be fine-tuned individually
(in Fig. 11 parameters are different for each row, but constant within a row). Details about the
reconstruction parameters are found in Appendix B.
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Fig. 11. Object reconstructions obtained from different setups: Initialization: the
ground truth setup perturbed with a noise level σ = 10 cm, Calibrated: the setup
obtained by the presented calibration method, G.T.: the ground truth / measured setup.
Note that in both cases the calibrated reconstruction closely resembles the ground truth
reconstruction, which implies that the calibration was successful.
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Fig. 12. Bi-directional distance between reconstructions and reference obtained from
different setups: Initialization: the ground truth setup perturbed with a noise level
σ = 10 cm, Calibrated: the setup obtained by the presented calibration method, G.T.:
the ground truth / measured setup. Smaller values are better, the combined score is
the maximum of both (here always the precision). After the calibration, the combined
distance is significantly lower.

Fig. 11. Object reconstructions obtained from different setups: Initialization: the ground
truth setup perturbed with a noise level σ = 10 cm, Calibrated: the setup obtained by the
presented calibration method, G.T.: the ground truth / measured setup. Note that in both
cases the calibrated reconstruction closely resembles the ground truth reconstruction, which
implies that the calibration was successful.
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The synthetic time-of-flight data for the reconstruction cannot be computed with the same
approach as for the synthetic calibration since the scene now contains a diffuse object. Therefore
we use the transient renderer presented by Iseringhausen et al. [6] which computes the required
transient histograms. We set the binning to 0.5 cm, similar to the time-of-flight noise of the
synthetic calibration. Additionally we apply shot noise to the transient histograms using a poisson
distribution (where the maximal transient pixel intensity is around 1500).
For a quantitative evaluation we use the NLoS mesh distance metric introduced by Klein et

al. [32]. It computes the precision (minimal distance to the reference from each point of the
reconstruction) and completeness (minimal distance to the reconstruction from each point of
the reference) of the reconstruction. Note that in this metric a reconstruction consisting of a
single point on the reference surface would have perfect precision but bad completeness score,
while a reconstruction consisting of all possible points would have perfect completeness but bad
precision score. Thus, there is in some sense a trade-off between both scores which is why the
maximum is taken as combined score.

The results are shown in Fig. 12, while Fig. 11 shows reconstruction renderings as qualitative
comparison. We evaluate only a calibration with 10 cm initialization noise, as all converged
calibrations have essentially the same quality (see Fig. 10). In this case the initial setup (before
calibration) can be interpreted as a previously measured setup geometry that is improved through
calibration rather than a coarse initialization (which would be obviously unsuitable for any
reconstructions) for a first-time setup geometry estimation.
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Fig. 11. Object reconstructions obtained from different setups: Initialization: the
ground truth setup perturbed with a noise level σ = 10 cm, Calibrated: the setup
obtained by the presented calibration method, G.T.: the ground truth / measured setup.
Note that in both cases the calibrated reconstruction closely resembles the ground truth
reconstruction, which implies that the calibration was successful.
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Fig. 12. Bi-directional distance between reconstructions and reference obtained from
different setups: Initialization: the ground truth setup perturbed with a noise level
σ = 10 cm, Calibrated: the setup obtained by the presented calibration method, G.T.:
the ground truth / measured setup. Smaller values are better, the combined score is
the maximum of both (here always the precision). After the calibration, the combined
distance is significantly lower.

Fig. 12. Bi-directional distance between reconstructions and reference obtained from
different setups: Initialization: the ground truth setup perturbed with a noise level σ = 10
cm, Calibrated: the setup obtained by the presented calibration method, G.T.: the ground
truth / measured setup. Smaller values are better, the combined score is the maximum of
both (here always the precision). After the calibration, the combined distance is significantly
lower.

We make the following observations:

• As expected, the higher temporal resolution and lower noise levels of the synthetic case
leads to significantly improved reconstruction results.

• Even for the experimental data where the house shape is not easily recognizable in the
reconstructed shape, the shape from the calibrated setup looks much more similar to the
shape from the hand measured (ground truth) setup than to the shape from the initialization
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setup. This shows that the calibration itself works well, even when the house shape cannot
be properly reconstructed.

• Thus, setup calibration is less sensitive to noise than object reconstruction.

• On experimental data, the calibrated setup actually leads to slightly better reconstructions
than the hand-measured ground truth setup. As described in Section 5.1 the measured
setup has some uncertainties which could be corrected by the calibration (similar to how
the initial setup is improved), but the improvement is also close to the general noise level.

6. Conclusion

Our proposed method for non-line-of-sight setup calibration is demonstrated to robustly optimize
real-world setups. Despite being a non-convex problem we show that a generous convergence
basin exists around the global minimum which results in low requirements of the initialization.
While completely arbitrary initialization is not sufficient, a rough estimate that does not necessarily
rely on the use of measuring tapes and rulers is sufficient for good results. Additionally, roughly
the same number of laser points and mirror positions should be used. The achieved accuracy
depends on the depth resolution of the setup, but setup specific parameterizations can be used to
enforce constraints and increase the accuracy. As the mirror target results in a single sharp peak in
the signal, we do not rely on hardware being able to record full transient histograms. This makes
our method applicable on a wide variety of hardware including amplitude-modulated continuous-
wave lidars. The ability to calibrate also non-planar walls could enable non-line-of-sight imaging
applications in everyday situations.

There are various ways in which our method could be extended in future work. When multiple
mirrors are placed in the scene at the same time instead of being measured one-by-one, the
mapping between measured peaks and physical mirrors becomes and additional optimization
problem. Solving this would allow for faster calibrations.

Although the calibration problem could be reformulated and extended to better support co-axial
setups, this might not be worth the effort, since co-axial setups are in general easier to calibrate
(see Section 2.).

Additionally the mirror that acts as calibration target could be augmented with a calibration
pattern that is then projected onto the wall. This would allow to capture additional information
which could possibly be used to improve results. Similarly, including also the intensity of paths
could allow to formulate additional constraints on the wall normal.

Appendix

A. Importing SPAD data

As our proposed method works purely on time-of-flight data, each hardware setup requires a
pre-processing step to convert sensor data to time-of-flight values. In the following we detail this
process for the hardware used in the evaluation in Section 5.

A.1. Distance extraction

For our measurements we use a PrincetonLightwave InGaAs Geiger-mode avalanche photodiode
camera where each pixel contains a counter that stops when the first photon is detected. By
varying the diode voltage the probability of a photon detection can be controlled and a full
transient histogram can be recorded. As the existence of early photons reduces the probability of
the detection of later photons, these histograms do not directly correspond to light intensities.
However, since our method uses only time-of-flight values and no intensity vales, this effect can
safely be ignored.
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The pixel counters are synchronized with the laser pulse, but setup-specific features such as
cable length between the two devices require an offset calibration. We perform this by placing a
flat calibration target at 3 known positions in front of the setup and fitting the offset of a linear
function (the gradient is known through the bin width) to the measurements.

Figure 13 shows an example of a pixel histogram. Due to the close proximity of the laser spot
to the camera view frustum the histogram contains lens flare artifacts which manifest as a peak at
the distance of the wall to the setup. The second peak in the histogram is light reflected by the
mirror, our actual signal. The peak shape is widened by the pulse duration of the laser.
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Fig. 13. Histogram recorded by a single camera pixel. Both scales show the same
data. The two peaks are well visible in the linear scale (orange). Scattering in the
scene produces some background noise after the primary peak, which is visible in the
logarithmic scale (blue).

A.1. Distance extraction

For our measurements we use a PrincetonLightwave InGaAs Geiger-mode avalanche photodiode
camera where each pixel contains a counter that stops when the first photon is detected. By
varying the diode voltage the probability of a photon detection can be controlled and a full
transient histogram can be recorded. As the existence of early photons reduces the probability of
the detection of later photons, these histograms do not directly correspond to light intensities.
However, since our method uses only time-of-flight values and no intensity vales, this effect can
safely be ignored.
The pixel counters are synchronized with the laser pulse, but setup-specific features such as

cable length between the two devices require an offset calibration. We perform this by placing a
flat calibration target at 3 known positions in front of the setup and fitting the offset of a linear
function (the gradient is known through the bin width) to the measurements.

Figure 13 shows an example of a pixel histogram. Due to the close proximity of the laser spot
to the camera view frustum the histogram contains lens flare artifacts which manifest as a peak at
the distance of the wall to the setup. The second peak in the histogram is light reflected by the
mirror, our actual signal. The peak shape is widened by the pulse duration of the laser.

To extract the location of the return with sub-bin resolution, we fit a Gaussian function to the
data . Despite this procedure, the overall accuracy is still limited by the camera noise. We employ
an iterative scheme, where peaks are located using the Python package scipy.optimize and
subtracted from the data to find additional peaks in the next iteration. Finally, the fractional
bin numbers of the peak locations are converted to time-of-flight values by applying the linear
mapping determined in the offset calibration.
Unfortunately some rows and columns in our sensor are broken and contain invalid values.

Figure 14a shows a raw image of the camera, integrated over time. The dead rows and colums
are removed before further processing. In addition to the dead rows in the middle, the first two
rows are removed as well, as they contain a single invalid pixel each. This leads to the pixel mask
seen in the main paper in Fig. 10.

A.2. Selecting valid measurements

Apart from the dead pixels most measurements contain additional invalid pixels. The most
common cause is that the reflection from the mirror does not cover the whole camera view
frustum. We therefore compute a valid pixel mask for each measurement and reject each pixel
marked as invalid.

Fig. 13. Histogram recorded by a single camera pixel. Both scales show the same data. The
two peaks are well visible in the linear scale (orange). Scattering in the scene produces some
background noise after the primary peak, which is visible in the logarithmic scale (blue).

To extract the location of the return with sub-bin resolution, we fit a Gaussian function to the
data . Despite this procedure, the overall accuracy is still limited by the camera noise. We employ
an iterative scheme, where peaks are located using the Python package scipy.optimize and
subtracted from the data to find additional peaks in the next iteration. Finally, the fractional
bin numbers of the peak locations are converted to time-of-flight values by applying the linear
mapping determined in the offset calibration.
Unfortunately some rows and columns in our sensor are broken and contain invalid values.

Figure 14(a) shows a raw image of the camera, integrated over time. The dead rows and colums
are removed before further processing. In addition to the dead rows in the middle, the first two
rows are removed as well, as they contain a single invalid pixel each. This leads to the pixel mask
seen in the main paper in Fig. 10.

Fig. 14. (a) A SPAD measurement integrated over time. Some rows in the lower middle
and some columns on the right contain invalid data and should be removed. (b) Invalid
rows and columns are removed (hence the reduced spatial extent of 29×26 pixels), but some
pixels are still invalid. (c) Result after filtering.
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A.2. Selecting valid measurements

Apart from the dead pixels most measurements contain additional invalid pixels. The most
common cause is that the reflection from the mirror does not cover the whole camera view
frustum. We therefore compute a valid pixel mask for each measurement and reject each pixel
marked as invalid.

The peak detection finds the highest peak first, so the peaks are sorted by their time delay. The
first peak is then the direct reflection while the second peak is our actual signal which is later
used for the calibration. Valid pixels are all pixels which fulfill all of the following criteria:

• The relative amplitude of the peaks should not differ by more than 20%. As the absolute
intensity can vary drastically for pixels of the same measurement, an criterion on absolute
peak amplitudes is less robust.

• The signal peak is at most 20 bins wide. If there are no clear two peak in the signal, the
fitting can return a degenerated peak that is extremely wide.

• The first peak is approximately at the distance of the wall (620 bins). We expect a direct
reflection from the wall and thus verify it. Note that this test is related to our hardware
setup and not the calibration method itself. Knowledge of the wall position is not required
for calibration.

• The second peak should have a minimum distance to the first peak (15 bins). This ensures
that two actually distinct peaks are detected.

These criteria are rather conservative but robustly remove any outliers. Figure 14 shows the
results on a measurement where the mirror reflection did only cover the left part of the view
frustum. The mask successfully removes all invalid pixels on the right, however some probably
good pixels in the top left are also removed. Since we only aim to reconstruct the overall sensor
projection and not individual pixel positions, these holes don’t significantly influence the end
result.

B. Object reconstruction

We reconstruct the hidden objects in Section 5.2 using the phasor-field virtual wave optics
algorithm by Liu et al. [22]. The parameters for the object reconstructions are kept as similar as
possible, however the different data sources necessitate some parameter changes.
Due to the lower temporal resolution of the experimental data, a lower wave number is used,

which smooths out some noise artifacts without removing true geometry features (experimental:
3, synthetic: 11). Similarly, as the intensity values are different different thresholds are used to
convert the density cloud into a surface (experimental: 0.5, synthetic: 0.05).
In the SPAD sensor, early arriving photons can shadow the detection of later arriving ones.

For pixel-histograms with a strong first peak (see Fig. 13), the second peak will be lower, even
if the same number of photons arrive. Since only distances and not intensities are used for
the calibration, this effect can be ignored, however for the backprojection it is advantageous to
normalize the intensities of the secondary peak to equalize pixel importance. Since in our setup
all pixels are illuminated quite homogeneously, a simple normalization approach yields good
results.

C. Setup Geometry

In the following we analyze the influence of the setup geometry on the calibration success. Since
in the most general case each laser position, camera pixel and mirror adds 3 degrees of freedom,
the effect of their placement is hard to evaluate exhaustively. Instead we evaluate two particularly
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interesting cases, the influence of the angle between camera and wall and constraining mirror
placement to the visible part of the scene.

C.1. Camera angle

We further analyze the impact of the camera angle with respect to the reflector wall using the
synthetic setup as described in Section 4.1.
The camera position is rotated around the Z-axis with the rotation origin as the center of the

reflector wall (see Fig. 3) in angles between 0◦ (view direction normal to the wall, as in Fig. 3)
and 45◦ to the right. At each step the camera is oriented such that the center pixel always faces
the rotation center.

The projected pixel pattern on the wall is distorted by this rotation: Pixels on the right side are
squeezed together, while pixels on the left side are pulled apart. This changes not only the pixel
center positions, but also their projected area. To account for this, the hardware agnostic model
from Section 4.1 is extended by a pixel model that scales the time-of-flight noise according to the
pixel size. This noise scaling is set to the relative difference between the distance of the projected
center pixel to the camera and the distance of each other projected pixel to the camera. In practice
this means that for the 45◦ case the time-of-flight noise for the most spread-out pixel is scaled by
about 1.41, while the time-of-flight noise for the most squeezed pixel is scaled by about 0.82.

For this evaluation a time-of-flight noise of 0.05 and an initialization noise of 0.2 is used. The
setup furthermore uses 8 lasers and 5 mirrors as well as the planar parameterization.

The results are shown in Fig. 15. For each of the 10 steps 16 random instances where calibrated.
We find that the distortion from the camera rotation slightly worsens the results, however the
effect seems almost negligible. When the noise scaling is turned of, the results have a similar
pattern but have an overall lower RMS error (even for no rotation the projected center pixel is the
closest to the camera, thus the overall noise scale is >1). Therefore the slight decrease of the
RMS is caused mainly by the distorted pixel centers and not just the additional noise from the
increased pixel area.
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Fig. 15. Calibration error with respect to the angle between camera and reflector wall.
Left: The time-of-flight noise is adjusted to the pixel size. Right: All pixels have the
same mean noise.

the calibration, this effect can be ignored, however for the backprojection it is advantageous to
normalize the intensities of the secondary peak to equalize pixel importance. Since in our setup
all pixels are illuminated quite homogeneously, a simple normalization approach yields good
results.

C. Setup Geometry

In the following we analyze the influence of the setup geometry on the calibration success. Since
in the most general case each laser position, camera pixel and mirror adds 3 degrees of freedom,
the effect of their placement is hard to evaluate exhaustively. Instead we evaluate two particularly
interesting cases, the influence of the angle between camera and wall and constraining mirror
placement to the visible part of the scene.

C.1. Camera angle

We further analyze the impact of the camera angle with respect to the reflector wall using the
synthetic setup as described in Section 4.1.
The camera position is rotated around the Z-axis with the rotation origin as the center of the

reflector wall (see Fig. 3) in angles between 0◦ (view direction normal to the wall, as in Fig. 3)
and 45◦ to the right. At each step the camera is oriented such that the center pixel always faces
the rotation center.

The projected pixel pattern on the wall is distorted by this rotation: Pixels on the right side are
squeezed together, while pixels on the left side are pulled apart. This changes not only the pixel
center positions, but also their projected area. To account for this, the hardware agnostic model
from Section 4.1 is extended by a pixel model that scales the time-of-flight noise according to the
pixel size. This noise scaling is set to the relative difference between the distance of the projected
center pixel to the camera and the distance of each other projected pixel to the camera. In practice
this means that for the 45◦ case the time-of-flight noise for the most spread-out pixel is scaled by
about 1.41, while the time-of-flight noise for the most squeezed pixel is scaled by about 0.82.

For this evaluation a time-of-flight noise of 0.05 and an initialization noise of 0.2 is used. The
setup furthermore uses 8 lasers and 5 mirrors as well as the planar parameterization.

The results are shown in Fig. 15. For each of the 10 steps 16 random instances where calibrated.
We find that the distortion from the camera rotation slightly worsens the results, however the
effect seems almost negligible. When the noise scaling is turned of, the results have a similar
pattern but have an overall lower RMS error (even for no rotation the projected center pixel is the
closest to the camera, thus the overall noise scale is >1). Therefore the slight decrease of the
RMS is caused mainly by the distorted pixel centers and not just the additional noise from the

Fig. 15. Calibration error with respect to the angle between camera and reflector wall. Left:
The time-of-flight noise is adjusted to the pixel size. Right: All pixels have the same mean
noise.

C.2. Constrained mirror placement

In usage scenarios outside the laboratory the hidden scene might not be accessible. Therefore we
perform a comparison between a setup with mirrors only in the visible part of the scene (defined
here as having a positive X component in the coordinate system of Fig. 3) and a setup with free
mirror placement.
The setup is based on the synthetic setup from Section 4.1. The time-of-flight noise is set to

0.05, an initialization noise to 0.2. 8 laser positions and 6 mirrors are used; in the free mirror
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placement case 3 are placed in the hidden part of the scene and 3 are placed in the visible part of
the scene. The camera is rotated by 30◦ (as described in Section 1) which is usually required
when an occluder is present in the scene. For both cases the calibration was performed 16 times
with different initializations.

The results are shown in Fig. 16. We find that in this setup the resulting calibration error is
about 25% higher if only the visible part of the scene can be used for mirror placement. We
conclude that free mirror placement is an advantage but not a necessity for our method to work.
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Fig. 16. Calibration results mirror placement constrained to the visible part of the
scene and mirror placement in the visible and hidden part of the scene. In both cases 6
mirrors are used.

increased pixel area.

C.2. Constrained mirror placement

In usage scenarios outside the laboratory the hidden scene might not be accessible. Therefore we
perform a comparison between a setup with mirrors only in the visible part of the scene (defined
here as having a positive X component in the coordinate system of Figure 3) and a setup with
free mirror placement.
The setup is based on the synthetic setup from Section 4.1. The time-of-flight noise is set to

0.05, an initialization noise to 0.2. 8 laser positions and 6 mirrors are used; in the free mirror
placement case 3 are placed in the hidden part of the scene and 3 are placed in the visible part of
the scene. The camera is rotated by 30◦ (as described in Section C.1) which is usually required
when an occluder is present in the scene. For both cases the calibration was performed 16 times
with different initializations.

The results are shown in Figure 16. We find that in this setup the resulting calibration error
is about 25% higher if only the visible part of the scene can be used for mirror placement. We
conclude that free mirror placement is an advantage but not a necessity for our method to work.

D. Code

The Python code containing our calibration framework as well as some examples is available
online [33].
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